
Communicator Spring 2006

�7

Taking FrameMaker a little further
Steve Rickaby demonstrates FrameMaker’s support
for long documents with repetitious layouts.

Tools

Jane Dards’ article in the Winter 2005
Communicator looked at how FrameMaker (FM)
can create tables of contents and indexes. This
article goes a little further, to show how FM’s
indexing is powerful and flexible enough to
support quite complex documents. It also looks
at some other useful features, such as paragraph
tag sequences, autonumbers, custom variables,
and running headers, that can help when working
with long documents with repeating layouts.

Constructing a directory
The example used here is a directory of
members of a professional body. The original
was produced a few years ago as a regional
directory of members of the Society for Editors
and Proofreaders (SfEP), but the ideas behind
the template can be applied to any document
designed to list information that requires a
repeating layout and multiple indexes. Examples
include parts lists, business listings, recipes, or
anything that needs to be made accessible in an
organised fashion. FM’s long-document abilities
really start to shine in such applications.

Setting up the layout
The directory consists of a section that contains
members’ details, laid out in a formal fashion,
followed by several indexes. Each member’s
entry consists of name, address and contact
details, followed by paragraphs listing work
skills, subject matter areas, media handled,
qualifications, available equipment, recent
clients and, finally, a free-text paragraph.

Figure 1 shows part of a page with fictitious

data. Several things are worth noting:
	The sequence of paragraphs for each

member’s entry is always the same.
	Some paragraphs are prefixed by a run-in

heading.
	Reversed headings are used to highlight the

start of each member’s entry.
	Specific keywords repeat throughout each

entry, particularly in the skills and subjects
sections.

	The page includes a running header that
echoes the surnames of the members listed on
the page.

FM provides features to help with all these
layout aspects.

The members’ details section is followed by
separate indexes that list members by skills,
subjects, media, and geographical location.
Figure 2 shows a section of the index by skill,
created from the page shown in Figure 1.

More than one index
FM is not limited to one index. By default it
provides the Index, Author and Subject marker
types, which can all be used in indexes, but
custom marker types can also be created. Why
would one want to do this? As the default
marker types imply, one application is to include
separate indexes in a book for different topics,
such as authors. The example here uses custom
marker types for skill, location, and media, as
well as the default Subject marker type, to give
the required four indexes.

Creating a custom marker type is easy: choose
Special>Marker to display the Marker dialog,
then choose Edit… from the Marker Type pop-
up menu. The Edit Custom Marker Type dialog
allows custom marker types to be created, edited,
or deleted. New marker types are then available
at the book level when the indexes are set up.

In this application, each index lists only one

Figure 1. Part of a sample page from the directory of members

Figure 2. An extract from one of the indexes

Communicator Spring 2006

�� Tools

marker type, as shown in Figure 3 for the index
by skills. Indexes are added to the book using
Add>Index Of>Markers from the book window.

Controlling the paragraph sequence
Although FM 7.x can be used in structured mode
to exert rigid control over a document’s structure
through an appropriate EDD (Element Definition
Document), in many cases the time, expense, and
complexity of creating an EDD is not justified.

The application described here uses a much
simpler approach. Each paragraph shown in
Figure 1 has a unique paragraph tag: Individual
(Peters, Pritchard), Christian (Alison, Steve),
Registration (Registered proofreader, Registered
copy-editor), Address, Telephone, Skill,
Subjects, Media, Qualifications, Equipment,
Clients, Freetext. The Next Pgf Tag field in the
basic properties of the paragraph designer is
set up to sequence these tags. If a paragraph
tag Telephone, for example, has Skill as its next
tag, FM applies the Skill tag to the paragraph
created when Return is pressed at the end of a
Telephone paragraph. This provides a simple
and quick means of controlling the formatting
of information as it is entered.

Setting up the run-in headings
Figure 1 shows that the Subjects, Media, Qualifi
cations, Equipment and Clients paragraphs
have their titles set as run-in headings. FM

explicitly supports run-in paragraphs, but in this
case the simplest way to create these headings is
to define them as autonumbers in the paragraph
tag definition. As previous articles in this
series pointed out, autonumbers don’t have to
be numbers. Figure 4 shows the autonumber
definition for the Subjects paragraph tag. The
Character Format field applies an existing
character tag Bold to the heading.

In combination with FM’s ‘next paragraph’
feature, this means that each member’s section
can be laid out almost completely just by
pressing the Return key repeatedly.

Creating the reversed headings
The reversed headings shown in Figure 1 are
one-cell tables. FM offers a wide selection of
table formatting controls: in this case the tables
are set with no borders and a 70% black fill. This
adds a little extra work to the layout, because
insertion of the tables cannot be achieved using
the ‘next paragraph tag’ method described
above. As all heading tables are identical,
however, they can simply be copied and pasted.
(Third-party plug-ins are also available that
make the insertion of ‘boilerplate’ layout objects
very quick and easy.)

An alternative way of achieving a similar
effect without using tables is to include a named
graphic from the reference pages and position it
behind the text. This wasn’t done here, though:
it’s fiddly, and counts as a ‘hack’ but, more
importantly, three separate paragraph types
are used in each heading table, for surname
(Individual), Christian name (Christian) and
registration, as explained later.

The text of the three paragraph tags that
occupy the heading tables is set in white, using
the Color field in the Default Font pane of the
paragraph designer, to achieve the reversed
effect. The heading tables are anchored in
a 2-point paragraph whose Next Pgf Tag
is Address, so that pressing Return in the
paragraph containing the table anchor creates a
new address paragraph below the table.

Setting up the index entries
Each member is listed by skills, subjects, media
and location in the indexes. A lot of index
markers therefore have to be entered: a marker
of the correct type is required for every entry in
the address, skill, subject and media paragraphs
of each member. Each must contain the key term
as the first-level index entry and the member’s
name as the second-level entry, separated by a
colon. So the copy-editing skill entry for ‘Alison
Peters’ contains ‘Copyediting:Peters, Alison’.

Anything that reduces the work involved
in entering these markers is going to help. To
make the process as simple and repeatable as
possible, the relevant key terms can be set up as
custom variables. Figure 5 shows the Variables
dialog. Defining a variable called, for example,

Figure 3. Setting up a custom index

Figure 4. Using autonumbers to create run-in titles

Communicator Spring 2006

��

Proofreading that contains only the word
‘Proofreading’ might seem on the face of it a
rather strange and pointless thing to do. However,
it gives several advantages in relation to indexing:
	Defining key terms as variables in an FM

template ensures that they appear identically
every time they are used. This means that
the indexes won’t end up with one set of
entries for, say, ‘Copy-editing’, and another for
‘Copyediting’.

	FM enters a word in the Marker dialog when it
is double-clicked in the body of the document.
If the word is a variable, however, FM places
it in the Marker dialog with only one click: a
click saved.

	Double-clicking on a word in a document to
place it in the Marker dialog only works for
single words. Triple-clicking in FM selects a
whole paragraph. If some key terms contain
multiple words, such as ‘Consultancy (editing)’
or ‘Travel/Exploration’, defining them as
custom variables allows the whole of the key
term to be entered into the Marker dialog with
only one click.

As the second-level marker information is
the member’s name for all markers within a
member’s entry, a sequence such as ‘:Peters,
Alison’ can be stored on the clipboard and pasted
repeatedly into the Marker dialog as the markers
for each member’s information is entered.

Unfortunately, once the index terms are
inserted in markers, they are no longer variables,
just text, and won’t respond to changes in their
original variable’s definition. FM does allow
specific marker text to be searched for, however.

Whenever dealing with repeating terms,
phrases or text in an FM application, it’s always
worth considering using custom variables to
contain them, and keyboard shortcuts make
them fast to enter, too.

Setting up the running headers
FM has a set of special header/footer variables
that can only be used on master pages. There are
four of these in FrameMaker 6, Running H/F 1–4,

and twelve in FrameMaker 7.x. These variables
allow running headers and footers to reference
other objects, such as the contents of heading
paragraphs or chapter titles.

For example, if a document uses the
paragraph tags Heading1 and Heading2 for the
top two levels of heading, defining a running H/F
variable as <$paratext[Heading1,Heading2]>
will display the contents of the most recent level
1 or level 2 heading.

The page headers in Figure 1 show the first
and last member’s names listed on each page.
To create such ‘dictionary-style’ headers, the
first two running header/footer variables
are defined as <$paratext[Individual]> and
<$paratext [+,Individual]>. The first variable
definition picks up the text of the first instance
on the page of the paragraph tag Individual,
while <$paratext[+,Individual]> tells FM to use
the text of the last instance of the Individual tag
it finds on the page. The same technique is used
to produce subject headers in the indexes.

It might now be obvious why the member’s
headings are set up with multiple paragraphs
for each member, one for their surname (the
Individual tag) and one for their Christian
name (the Christian tag): the surname needs
to be available for use in the running headers.
To keep all this information on the same line,
the Individual tag must be defined as a run-
in paragraph in the Pagination pane of the
paragraph designer. This ensures that FM does
not create a linefeed at the end of an Individual
paragraph, so that the Christian paragraph can
run on in the same line. The same method is
used to allow the Registration paragraph to run
on after the member’s Christian name.

The Default Punctuation field in the
Pagination pane tells FM to insert characters
automatically at the end of a run-in paragraph.
Here we want a comma–space sequence after
a member’s surname. FM helpfully excludes
this default punctuation from a running H/F
variable’s $paratext[paratag] definition.
Alternatively, the comma–space sequence could
be defined as the autonumber of the Christian
tag’s definition: this approach is used to create
the white space before the registration details.

Why not just type the required punctuation?
Defining it in the template enforces uniformity,
but also, if the punctuation were part of the
paragraph’s text, the running headers would
look like this: Peters, –Pritchard,… which is
definitely not what is required. C

For more information
All the FM features described in this article are
covered in the FrameMaker User Guide and online
help. The FrameUsers site and mail list are also
very useful resources: www.frameusers.com.

Steve Rickaby BSc
MISTC has been a
freelance technical author
and editor for 15 years,
and has used FrameMaker
for most of that time.
E: srickaby
@wordmongers.com
W: www.wordmongers.com

Figure 5. Using variables to control invariant text

